Title: | Micro Simulation Model for Cervical Cancer Prevention |
---|---|
Description: | Micro simulation model to reproduce natural history of cervical cancer and cost-effectiveness evaluation of prevention strategies. See Georgalis L, de Sanjose S, Esnaola M, Bosch F X, Diaz M (2016) <doi:10.1097/CEJ.0000000000000202> for more details. |
Authors: | David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia) |
Maintainer: | David Moriña Soler <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.0.3 |
Built: | 2025-02-20 03:13:32 UTC |
Source: | https://github.com/cran/mSimCC |
Microsimulation model to reproduce natural history of cervical cancer and cost-effectiveness evaluation of prevention strategies.
Package: | mSimCC |
Type: | Package |
Version: | 0.0.3 |
Date: | 2023-08-21 |
License: | GPL version 2 or newer |
LazyLoad: | yes |
David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)
Mantainer: David Moriña Soler <[email protected]>
Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.
Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.
mSimCC-package
, bCohort
, microsim
, costs
, le
,
plotCIN1Incidence
, plotCIN2Incidence
, plotCIN3Incidence
,
plotIncidence
, plotMortality
, plotPrevalence
,
qalys
, yls
This function aggregates data from several microsimulated cohorts.
bCohort(ind)
bCohort(ind)
ind |
microsimulated cohort obtained using |
Data frame with health states as columns and ages as rows.
David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)
Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.
Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.
mSimCC-package
, microsim
, costs
, le
,
plotCIN1Incidence
, plotCIN2Incidence
, plotCIN3Incidence
,
plotIncidence
, plotMortality
, plotPrevalence
,
qalys
, yls
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level hn_c <- bCohort(hn) ### Aggregated level
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level hn_c <- bCohort(hn) ### Aggregated level
Calculate the costs of a prevention strategy.
costs(scenario, disc=FALSE)
costs(scenario, disc=FALSE)
scenario |
microsimulated cohort. |
disc |
discount rate to be applied. Defaults to |
Global and per-person costs of the considered prevention strategy.
David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)
Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.
Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.
mSimCC-package
, microsim
, bCohort
, le
,
plotCIN1Incidence
, plotCIN2Incidence
, plotCIN3Incidence
,
plotIncidence
, plotMortality
, plotPrevalence
,
qalys
, yls
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level costs(hn)
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level costs(hn)
Aggregates data from a microsimulated cohort.
le(scenario, disc=FALSE)
le(scenario, disc=FALSE)
scenario |
microsimulated cohort. |
disc |
discount rate to be applied. Defaults to |
Global and per-person life expectancy of the considered prevention strategy.
David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)
Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.
Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.
mSimCC-package
, microsim
, costs
, bCohort
,
plotCIN1Incidence
, plotCIN2Incidence
, plotCIN3Incidence
,
plotIncidence
, plotMortality
, plotPrevalence
,
qalys
, yls
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level le(hn) ### Aggregated level
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level le(hn) ### Aggregated level
Generates several microsimulated cohorts with desired specifications.
microsim(seed=1234, nsim, transition, abs_states, sympt_states, prob_sympt, size, p_men, min_age, max_age, utilityCoefs, costCoefs.md, costCoefs.nmd, costCoefs.i, disc=3, vacc=FALSE, vacc.age=NULL, ndoses=NULL, vacc.cov=NULL, vacc.eff=NULL, vacc.type=NULL, vacc.prop=NULL, vaccprice.md=NULL, vaccprice.nmd=NULL, vaccprice.i=NULL, screening=FALSE, screenType=0, scrSchema=0, screenPeriod=NULL, cytoType=NULL, screenPrice.md=NULL, screenPrice.nmd=NULL, screenPrice.i=NULL, colpoPrice.md=NULL, colpoPrice.nmd=NULL, colpoPrice.i=NULL, hpvTestPrice.md=NULL, hpvTestPrice.nmd=NULL, hpvTestPrice.i=NULL, cytoHpvPrice.md=NULL, cytoHpvPrice.nmd=NULL, cytoHpvPrice.i=NULL, biopsPrice.md=NULL, biopsPrice.nmd=NULL, biopsPrice.i=NULL, screenCoverage=NULL, screenSensi=NULL, screenSensi2=NULL, screenSensi3=NULL, colpoSensi=NULL, biopSensi=NULL, hpvTestSensi=NULL, treatProbs, nAnnualVisits=0, nAnnualVisitsLSIL=0, nAnnualVisitsHSIL=0, cytoHPVPeriod=0, cytoHPVPostColpo=0, cytoHPVPostBiop=NULL, cytoLSILperiod=0, cytoHSILperiod=0, switchAge=0, C_period=NULL, hpvPeriod=0, nCores=1)
microsim(seed=1234, nsim, transition, abs_states, sympt_states, prob_sympt, size, p_men, min_age, max_age, utilityCoefs, costCoefs.md, costCoefs.nmd, costCoefs.i, disc=3, vacc=FALSE, vacc.age=NULL, ndoses=NULL, vacc.cov=NULL, vacc.eff=NULL, vacc.type=NULL, vacc.prop=NULL, vaccprice.md=NULL, vaccprice.nmd=NULL, vaccprice.i=NULL, screening=FALSE, screenType=0, scrSchema=0, screenPeriod=NULL, cytoType=NULL, screenPrice.md=NULL, screenPrice.nmd=NULL, screenPrice.i=NULL, colpoPrice.md=NULL, colpoPrice.nmd=NULL, colpoPrice.i=NULL, hpvTestPrice.md=NULL, hpvTestPrice.nmd=NULL, hpvTestPrice.i=NULL, cytoHpvPrice.md=NULL, cytoHpvPrice.nmd=NULL, cytoHpvPrice.i=NULL, biopsPrice.md=NULL, biopsPrice.nmd=NULL, biopsPrice.i=NULL, screenCoverage=NULL, screenSensi=NULL, screenSensi2=NULL, screenSensi3=NULL, colpoSensi=NULL, biopSensi=NULL, hpvTestSensi=NULL, treatProbs, nAnnualVisits=0, nAnnualVisitsLSIL=0, nAnnualVisitsHSIL=0, cytoHPVPeriod=0, cytoHPVPostColpo=0, cytoHPVPostBiop=NULL, cytoLSILperiod=0, cytoHSILperiod=0, switchAge=0, C_period=NULL, hpvPeriod=0, nCores=1)
seed |
seed to be used in the simulation. Default value is |
nsim |
number of cohorts to be simulated. |
transition |
transition probabilities matrix. |
abs_states |
vector with the absorbing states. |
sympt_states |
vector with the health states that might present symptoms. |
prob_sympt |
vector with the probability of presenting symptoms for each health state that might present symptoms. Should have the same length of |
size |
number of individuals on each simulated cohort. |
p_men |
proportion of men in the simulated cohorts. |
min_age |
lowest age in the cohort. |
max_age |
largest age in the cohort. |
utilityCoefs |
vector with the utilities for each health state. |
costCoefs.md |
vector with the direct medical costs for each health state. |
costCoefs.nmd |
vector with the direct non medical costs for each health state. |
costCoefs.i |
vector with the indirect costs for each health state. |
disc |
discount rate in percentage. Default value is |
vacc |
boolean value specifying if the considered scenario includes vaccination. Default value is |
vacc.age |
vector with ages at vaccination if the considered scenario includes vaccination. Default value is |
ndoses |
number of doses of vaccine if the considered scenario includes vaccination. Default value is |
vacc.cov |
vaccine coverage if the considered scenario includes vaccination. Default value is |
vacc.eff |
vaccine effectivity if the considered scenario includes vaccination. Default value is |
vacc.type |
type of vaccine if the considered scenario includes vaccination, character with values |
vacc.prop |
proportion of vaccinated women on each age group if the considered scenario includes vaccination. Default value is |
vaccprice.md |
vaccine direct medical costs if the considered scenario includes vaccination. Default value is |
vaccprice.nmd |
vaccine direct non medical costs if the considered scenario includes vaccination. Default value is |
vaccprice.i |
vaccine indirect if the considered scenario includes vaccination. Default value is |
screening |
boolean specifying if the considered scenario includes screening of any type. Default value is |
screenType |
type of screening. |
scrSchema |
screening schema. |
screenPeriod |
screening period (in years). Default value is |
cytoType |
type of cytology. |
screenPrice.md |
medical direct cost of cytology. Default value is |
screenPrice.nmd |
non-medical direct cost of cytology. Default value is |
screenPrice.i |
indirect cost of cytology. Default value is |
colpoPrice.md |
medical direct cost of colposcopy. Default value is |
colpoPrice.nmd |
non-medical direct cost of colposcopy. Default value is |
colpoPrice.i |
indirect cost of colposcopy. Default value is |
hpvTestPrice.md |
medical direct cost of HPV test. Default value is |
hpvTestPrice.nmd |
non-medical direct cost of HPV test. Default value is |
hpvTestPrice.i |
indirect cost of HPV test. Default value is |
cytoHpvPrice.md |
medical direct cost of HPV reflex test, in case |
cytoHpvPrice.nmd |
non-medical direct cost of HPV reflex test, in case |
cytoHpvPrice.i |
indirect cost of HPV reflex test, in case |
biopsPrice.md |
medical direct cost of biopsy. Default value is |
biopsPrice.nmd |
non-medical direct cost of biopsy. Default value is |
biopsPrice.i |
indirect cost of biopsy. Default value is |
screenCoverage |
cytology coverage for each age group. Default value is |
screenSensi |
cytology sensitivity for each age group. Default value is |
screenSensi2 |
cytology sensitivity after cytology for each age group. Default value is |
screenSensi3 |
cytology sensitivity after HPV test for each age group. Default value is |
colpoSensi |
colposcopy sensitivity for each age group. Default value is |
biopSensi |
biopsy sensitivity for each age group. Default value is |
hpvTestSensi |
HPV test sensitivity for each age group. Default value is |
treatProbs |
probability of recuperation after treatment for each FIGO I - FIGO IV states. |
nAnnualVisits |
number of annual visits after colposcopy for screening schema |
nAnnualVisitsLSIL |
number of annual visits after LSIL for screening schema |
nAnnualVisitsHSIL |
number of annual visits after HSIL for screening schema |
cytoHPVPeriod |
cytology and HPV test protocol period for screening schemas |
cytoHPVPostColpo |
cytology and HPV test protocol period after colposcopy protocol for screening schemas |
cytoHPVPostBiop |
cytology and HPV test protocol period after biopsy protocol for screening schemas |
cytoLSILperiod |
period for cytology after LSIL detection for screening schame |
cytoHSILperiod |
period for cytology after HSIL detection for screening schame |
switchAge |
age at which screening protocol changes for screening schemas |
C_period |
vector with screening periods (in years) before and after switch age for screening schemas |
hpvPeriod |
period for HPV test in screening schema |
nCores |
number of cores of the computer. Default value is |
Data frame containing the simulated cohorts and the individual history for each person in each simulated cohort.
David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)
Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.
Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.
mSimCC-package
, bCohort
, costs
, le
,
plotCIN1Incidence
, plotCIN2Incidence
, plotCIN3Incidence
,
plotIncidence
, plotMortality
, plotPrevalence
,
qalys
, yls
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level
Calculates and plots the CIN1 incidence for one or several prevention strategies.
plotCIN1Incidence(..., current=NULL, labels=NULL)
plotCIN1Incidence(..., current=NULL, labels=NULL)
... |
one or several microsimulated cohort corresponding to one or several microsimulated cohorts. |
current |
real CIN 1 incidence in the population of interest. |
labels |
labels to be used in the plot. |
Returns a list with CIN 1 incidence for each age group.
David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)
Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.
Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.
mSimCC-package
, microsim
, costs
, le
,
bCohort
, plotCIN2Incidence
, plotCIN3Incidence
,
plotIncidence
, plotMortality
, plotPrevalence
,
qalys
, yls
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level hn_c <- bCohort(hn) plotCIN1Incidence(hn_c) ### Aggregated level
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level hn_c <- bCohort(hn) plotCIN1Incidence(hn_c) ### Aggregated level
Calculates and plots the CIN2 incidence for one or several prevention strategies.
plotCIN2Incidence(..., current=NULL, labels=NULL)
plotCIN2Incidence(..., current=NULL, labels=NULL)
... |
one or several microsimulated cohort corresponding to one or several microsimulated cohorts. |
current |
real CIN 2 incidence in the population of interest. |
labels |
labels to be used in the plot. |
Returns a list with CIN 2 incidence for each age group.
David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)
Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.
Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.
mSimCC-package
, microsim
, costs
, le
,
bCohort
, plotCIN1Incidence
, plotCIN3Incidence
,
plotIncidence
, plotMortality
, plotPrevalence
,
qalys
, yls
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level hn_c <- bCohort(hn) plotCIN2Incidence(hn_c) ### Aggregated level
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level hn_c <- bCohort(hn) plotCIN2Incidence(hn_c) ### Aggregated level
Calculates and plots the CIN3 incidence for one or several prevention strategies.
plotCIN3Incidence(..., current=NULL, labels=NULL)
plotCIN3Incidence(..., current=NULL, labels=NULL)
... |
one or several microsimulated cohort corresponding to one or several microsimulated cohorts. |
current |
real CIN 3 incidence in the population of interest. |
labels |
labels to be used in the plot. |
Returns a list with CIN 3 incidence for each age group.
David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)
Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.
Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.
mSimCC-package
, microsim
, costs
, le
,
bCohort
, plotCIN2Incidence
, plotCIN1Incidence
,
plotIncidence
, plotMortality
, plotPrevalence
,
qalys
, yls
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level hn_c <- bCohort(hn) plotCIN3Incidence(hn_c) ### Aggregated level
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level hn_c <- bCohort(hn) plotCIN3Incidence(hn_c) ### Aggregated level
Calculates and plots the cervical cancer incidence for one or several prevention strategies.
plotIncidence(..., current=NULL, labels=NULL)
plotIncidence(..., current=NULL, labels=NULL)
... |
one or several microsimulated cohort corresponding to one or several microsimulated cohorts. |
current |
real cervical cancer incidence in the population of interest. |
labels |
labels to be used in the plot. |
Returns a list with cervical cancer incidence for each age group.
David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)
Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.
Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.
mSimCC-package
, microsim
, costs
, le
,
bCohort
, plotCIN2Incidence
, plotCIN1Incidence
,
plotCIN3Incidence
, plotMortality
, plotPrevalence
,
qalys
, yls
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level hn_c <- bCohort(hn) plotIncidence(hn_c) ### Aggregated level
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level hn_c <- bCohort(hn) plotIncidence(hn_c) ### Aggregated level
Calculates and plots the cervical cancer mortality for one or several prevention strategies.
plotMortality(..., current=NULL, labels=NULL)
plotMortality(..., current=NULL, labels=NULL)
... |
one or several microsimulated cohort corresponding to one or several microsimulated cohorts. |
current |
real cervical cancer mortality in the population of interest. |
labels |
labels to be used in the plot. |
Returns a list with cervical cancer mortality for each age group.
David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)
Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.
Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.
mSimCC-package
, microsim
, costs
, le
,
bCohort
, plotCIN2Incidence
, plotCIN1Incidence
,
plotCIN3Incidence
, plotMortality
, plotPrevalence
,
qalys
, yls
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level hn_c <- bCohort(hn) plotMortality(hn_c) ### Aggregated level
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level hn_c <- bCohort(hn) plotMortality(hn_c) ### Aggregated level
Calculates and plots the HPV prevalence for one or several prevention strategies.
plotPrevalence(..., current=NULL, labels=NULL)
plotPrevalence(..., current=NULL, labels=NULL)
... |
one or several microsimulated cohort corresponding to one or several microsimulated cohorts. |
current |
real HPV prevalence in the population of interest. |
labels |
labels to be used in the plot. |
Returns a list with HPV prevalence for each age group.
David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)
Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.
Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.
mSimCC-package
, microsim
, costs
, le
,
bCohort
, plotCIN2Incidence
, plotCIN1Incidence
,
plotCIN3Incidence
, plotMortality
, plotIncidence
,
qalys
, yls
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level hn_c <- bCohort(hn) plotPrevalence(hn_c) ### Aggregated level
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level hn_c <- bCohort(hn) plotPrevalence(hn_c) ### Aggregated level
This data corresponds to a transition probabilities matrix calibrated for the Spanish population.
probs
probs
A data frame with 180 rows and 13 columns.
Aggregates data from a microsimulated cohort.
qalys(scenario, disc=FALSE)
qalys(scenario, disc=FALSE)
scenario |
microsimulated cohort. |
disc |
discount rate to be applied. Defaults to |
Global and per-person QALYs of the considered prevention strategy.
David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)
Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.
Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.
mSimCC-package
, microsim
, costs
, le
,
plotCIN1Incidence
, plotCIN2Incidence
, plotCIN3Incidence
,
plotIncidence
, plotMortality
, plotPrevalence
,
bCohort
, yls
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level qalys(hn)
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) ### individual level qalys(hn)
Aggregates data from a microsimulated cohort.
yls(scenario1, scenario2, disc = FALSE)
yls(scenario1, scenario2, disc = FALSE)
scenario1 |
microsimulated cohort. |
scenario2 |
microsimulated cohort. |
disc |
discount rate to be applied. Defaults to |
Years of life saved due to strategy scenario1
compared to scenario2
.
David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)
Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.
Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.
mSimCC-package
, microsim
, costs
, le
,
plotCIN1Incidence
, plotCIN2Incidence
, plotCIN3Incidence
,
plotIncidence
, plotMortality
, plotPrevalence
,
qalys
, bCohort
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) vacc12 <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, vacc=TRUE, vacc.age=12, vacc.prop=1, ndoses=3, vacc.cov=0.828, vacc.eff=1, vacc.type="biv", vaccprice.md=33.6, vaccprice.nmd=0, vaccprice.i=0, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) yls(hn, vacc12)
data(probs) nsim <- 3 p.men <- 0 size <- 20 min.age <- 10 max.age <- 84 #### Natural history hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) vacc12 <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), prob_sympt=c(0.11, 0.23, 0.66, 0.9), size, p.men, min.age, max.age, utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0), costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 34016.6, 0, 0, 0), costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0), costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, vacc=TRUE, vacc.age=12, vacc.prop=1, ndoses=3, vacc.cov=0.828, vacc.eff=1, vacc.type="biv", vaccprice.md=33.6, vaccprice.nmd=0, vaccprice.i=0, treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) yls(hn, vacc12)